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General ways nano impacts industry sustainability

* Green(er) synthesis of (nano)materials and
(nano)structures

— Bottom up or additive fabrication
— Improved sensing and filtration

e Synthesis of green(er) (nano)materials and
(nano)technologies

— Less is more, e.g. surface-driven applications

* Improved functionality, often in a smaller package
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Nanotechnology for Medicine

+++++++

* |maging
* Diagnostics

 Therapeutics

http://www.azonano.com/article.aspx?ArticlelD=1538 Credit: J. Chang, Vanderbilt



Total Health Care Expenditures
Percent of GDP, 1960-2008

Most drugs
...don’t work for most people
...most of the time.

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005



Nanotechnology for Living

o

e Assistive Technologies

e Health monitors

Elettrical medul
interconnects

e ey
Sernitransparent Display ~  clrcuit
display and Telecommunication  control circuit
micelnns an. and power reception . .
._ Y41 O e Parviz, U. Washington
http://www.greendiary.com/healthpals-body-heat-powered- http://www.elementalled.com/academy/blog/innovative

wearable-health-monitoring-system.html -technology/led-lights-make-augmented-vision-a-reality/



Nanotechnology for Automotive

Edison2 VLC—1060 lbs; 100+ mpg
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Nanotechnology for Energy

e Solid state lighting
e Solar cells
e Batteries




Nanotechnology for ITC & Electronics

More connected
More mobile
More data = more knowledge

More “intelligent” environment




Semiconductors Enable Broad Energy Efficiency
Save 1.2 Trillion kWh, Reduce CO, emissions by 733 MMT in 2030

*Note: Accelerated investments in semiconductor-related technologies stimulated by smart policies.
Source: American Council for an Energy-Efficient Economy, “Semiconductor Technologies: The
Potential to Revolutionize U.S. Energy Productivity,” (2009).
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Nanotechnology for Semiconductors

Nanomaterials

Nanostructures
Nanomanufacturing

Nano metrology &
characterization
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What Moore’s Law Has Enabled

1982: Best available storage technology 80Gb cost

was the IBM 3350 $9’OOO’OOO 11

In 1976 dollars

126 IBM 3350's =

storage in
1 iPod

Each unit: IPod(5G)
= 635 MB 80GB

= $70,000

80Gh cost

$100

in 2012 dollars



http://upload.wikimedia.org/wikipedia/commons/8/88/Ipod_5th_Generation_white.jpg

Nanotechnology + Electronics =

Today’s Semiconductor Industry

2003 2005
90 nm

Invented 21 Gen, First to

Invented ;
SiGe SiGe Gate-Last Gate-Last Implement
Strained Silicon Strained Silicon High-k Metal Gate  High-k Metal Gate Tri-Gate

Strained Silicon

“High k Metal gate
" Tri-Gate




Nano-thick Gate Oxide Layer Requires

New High-K Material

K Gap (eV) CB offset (eV)
Si 1.1
Si02 3.9 9 3.2
SigNy 7 5.3 2.4
Al O3 9 8.8 2.8 (not ALD)
[as 05 22 4.4 0.35
I'1O2 80 3.5 0
Sr'TiOg 2000 3.2 0
ZrOs 25 5.8 1.5
) HfO, 25 5.8 1.4
HfSi04 11 6.5 1.8
) 24,0 30 6 2.3
Y203 15 6 2.3
a-LaAlO3 30 5.6 1.8

Source: Robertson, Eur Phys J Appl Phys, 28 (2004) 265



As Transistors Shrink, So Do Interconnects

Half of microprocessor
power goes to interconnects
(> 1 billion transistors;
total budget= 200 watts)

Diffusion
15%

New conductive and
insulating (nano)materials
are needed

B

Source: NIST

Length of interconnects in a microprocessor = 36 miles
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Interconnect Triple Challenge

B Cu line resistivity (micro-ohm-cm)
o
. L S 2012
B Em? __——__lﬂ-:}__---.EDDE e ‘.—__’—-‘_ . .
e —yr #----{ barrier thickness (nm)
.
’ ILD Bulk dielectric constant -

70 20 30 10
1/2 pitch - Metal 1 (nm)

Source: http://www.future-fab.com/documents.asp?d_1D=4414



Need Better (Nano)lnsulators:
Low-k Dielectric Materials

Dielectric Value of k (@ 1 MHz)
SIOR Fy i, 3.2-3.5
Hydrogen silsesquioXane ..............oooooviiiiiiiiiiiciiiiiiieieecceeeeee e 3.0
PolysiloXane ..o, 2.89
Fluropolyimide ... 2.8
Benzo-cyclo-butane ............ccccociiiiiiiiiii 2.7
Black diamond ..o 2.7
Polyethylene ..., 2.4
POlypropylene......cooovieiiiiiiiiiiicee e 2.3
FIUOTOPOLYMET ... 2.24
Perylene ... 2.2
Dupont PTFE-based copolymer AF 2400 ...........c.cccoviiiiiiciinniinnninne, 2.06
XETOGEIS oot 1.2
AT (o 1.0

CarbON IOXIAC ... e 1.0



“Silicon” Chips are Complex Nanomaterials

What are the possible ESH effects?
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2011 ITRS*: Addressing Increasing Complexity,
ESH & Sustainability

 ESH strategies

— To understand (characterize) processes and
materials during the development phase

— To use materials that are less hazardous or whose
byproducts are less hazardous

— To design products and systems (equipment and
facilities) that consume less raw materials and
resources

— To make the factory safe for employees

* International Technology Roadmap for Semiconductors @
available at www.itrs.org



http://www.itrs.org/

2011 ITRS: ESH Difficult Challenges (examples)

Chemicals & materials
— Assessment/characterization tools & methods

— Comprehensive ESH data

Process & equipment

— “Greener” processes (more benign & less materials)
— Exposure management

Facilities

— Improve efficiency (electricity, water, HVAC)
Sustainability

— Design for ESH (similar to other DFX)
— Need for metrics




2011 ITRS: ESH & Emerging Nanomaterials

 Developing effective monitoring tools to detect
nanomaterials’ presence in the workplace, in waste streams,
and in the environment

e Evaluating and developing appropriate protocols to ensure
worker health and safety

e Evaluating and developing emission control equipment to
ensure effective treatment of nanomaterials-containing waste
streams

e Understanding new nanomaterials’ toxicity as it may differ
from the bulk forms; involves developing rapid nanomaterials
toxicity assessment methods as well as nanomaterials toxicity
models




Industry’s Voluntary Steps toward Sustainability

e World Semiconductor Council initiatives to reduce
environmental impact

— Reduce GHG emissions per area of Si wafer by
30% by 2020 from 2010 levels

— Eliminate PFOS (perfluorooctyl sulfonates) from
non-critical applications and research alternatives
for critical uses

e |ndustry goal to keep energy/water use and air
emissions constant per wafer during transition from
300 mm to 450 mm (more than 2X area)



Individual Companies Setting Goals: (inter)

Intel’s 2012 Environmental Goals

Reduce water use per chip below 2007 levels by 2012

Reduce absolute global-warming gas footprint by 20%
by 2012 from 2007 levels

Reduce energy consumption per chip 5% per year from
2007 through 2012

Reduce generation of chemical waste per chip by 10%
by 2012 from 2007 levels

Recycle 80% of chemical and solid waste generated
per year

Achieve engineering and design milestones to ensure
that Intel products maintain the energy-efficiency lead
in the market for next two product generations



Individual Companies Setting Goals: i3 Tiyas
TI 2012 Environmental Goals INSTRUMENTS

e Reduce GHG emissions per chip
produced 30% by 2015 from

Carbon footprint

2.5 1.0 2
2010 level ' S
* Raise waste efficiency (recycling) 20 g - o 08 g
rate to 95% (currently 92%) iy .68
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Center for Environmentally Benign

Semiconductor Manufacturing

NSF ERC; co-funded with industry (SRC and SEMATECH) for 10
years; industry funded since 2006
APPROACH

v Focus on fundamental research to address manufacturing needs and

technology gaps

v Transfer results to commercial application

v’ Create synergy and partnership with industry in funding and conduct of
research

Environmentally Sustainable Electronics Manufacturing

Thrust A Thrust B Thrust C
Novel ESH-Friendly ESH Aspects
Solutions Novel Materials of Future
to Existing and Processes Nanoscale
ESH Problems Manufacturing

Enabling ESH Fundamentals




Founding Universities

* U Arizona

e U California — Berkeley
e MIT

e Stanford

Other University members
e Arizona State U (1998-)
e Columbia (2006-2009)

e Cornell (1998- )

e Georgia Tech (2009-)

e U Maryland (1999-2003)
e U Massachusetts (2006-2009)
e UNC-Chapel Hill (2009- )
e Purdue (2003-2008 )

e U Texas-Dallas (2009- )

e Tufts (2005-2008 )

e U Washington (2008-)

e U Wisconsin (2009-)

e UCLA (2011-)

e Johns Hopkins (2011-)

e NCA&T (2011-)

CEBMS Stats

Cumulative Data:

19 Core member Universities
243 PhD and MS

205 Undergraduates (reported)
13 Academic disciplines

> 80% of graduates joined SC industry
& suppliers (mostly ERC members)

13 Current member universities
37 Current PI/Co-Pls
39 Current graduate students

http://www.erc.arizona.edu/




Flow (GPM)

Water & Energy Savings Enabled by
Electro-Chemical Residue Sensor (ECRS)
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e Use initial cold rinse to flush tank

e Use hot water to finish flush and heat wafers

e (Cycle time is not increased

e Savings: ~25% cold water and ~ 80% hot water
* Technology transferred to industry

Idle Flow

15




Environmentally Friendly (PFOS-Free) Materials for
Next Generation Photolithography

t d
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New Techniques for Toxicity Assessment of
Nanomaterials

Impedance-based method v’ HfO,, ZrO, and CeO, NPs show
mild to no toxicity.

v Higher toxicity correlated to

- 4 chemical contamination
S == . . . .
e T v' Chemical reactive oxide species

(ROS) production indicative of NP

59 %@ toxicity

z-z, BN z-z, v NPs producing ROS in water are
most toxic.

Cell-based method (HBE lung cells)

Time: Oh 05h 1.0 h 1.5h 2.0h HfO,




Predicting, Testing, and Neutralizing
Nanoparticle Toxicity

Goal: Understand the factors that impact and
reduce single-walled carbon nanotube (SWNT)
toxicity.

Approach: Develop standard sonication and
centrifugation processes to disperse SWNTs and
assess their impact on the proliferative ability of a
standard cell line.

Results:

 SWCNT toxicity tends to correlate with
contaminants, such as oxidized amorphous carbon
species.

* Removal of these toxic contaminants appears to

reduce the toxicity associated with carboxylated
SWNTs.

32

Sub-cellular location
of SWCNTSs using
Raman microscopy.



Nanoelectronics:
Beyond Today’s Technology

e Can we store and send 1’s and 0’s using
something other than charge?

* Are there materials that offer advantages?

Carbon Nanotubes Graphehe



Carbon Nanotube Electronics

Carbon nanotube properties make them candidates to
replace CMOS in transistor.

Challenges include:

e Making/sorting homogenous semiconducting material
* Precise placement of nanotubes

e Scalable process

armchair zigzag



Carbon Nanotube Electronics

IBM researchers have discovered how to:

e precisely place carbon nanotubes on a computer chip,

e arrange the nanotubes 100 times more densely than earlier
methods, and

e build a chip with more than 10,000 carbon nanotube-based
elements ' 3

http://www-03.ibm.com/press/us/en/pressrelease/39250.wss



Nanoelectronics Research Initiative
Industry-Govt Partnership
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Spin-Wave Device
WIN - UCLA, UCSB
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“NRI: Research on Novel Materials and
Devices for “Beyond Moore’s Law”

Spin-FET
WIN - UCLA

MnGe

Tunnel Devices
MIND

Si

Heterojunctions

Notre Dame, Penn State

HfO2
p+ InGaAs

Au
undoped InGaAs | Ti / D \

n+ InGaAs |

Bilayer pseudoSpin
SWAN - UT Austin

Graphene Processes
SWAN — UT Dallas

Insulators Oxidation

/]
—

Contacts

Graphene nneling Insulator

i N .
N ERERANN IO

Substrate Graphene

——

Nanomagnet Logic
MIND - Notre Dame

Graphene PN
Junction Device

Graphene Integration
INDEX — SUNY Albany

o ot

All-Spin Logic
INDEX - Purdue U.

vertical TFET - side gated

Nanowires
Penn State

Graphene
Notre Dame

GNRTFET Array GNR Array
Source | Gate 7 _" Drain |

i tunnel

oxide
Insulating Substrate |




Looking Ahead

e Sustainable industry and sustainable nanotechnology
go hand in hand

 Areas where work is needed:
— Nano metrology/characterization
— Nanomanufacturing
— Nano sensors

— Sustainability metrics



Take Away Messages

e |Industries are keenly interested in sustainability from
a business perspective

 Nanotechnology offers the potential to reduce use of
resources and make new greener products

 Nanoelectronics (aka semiconductor industry) has
potential to raise sustainability
of many other industries
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